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The goal of this class of theories is to formulate what it means to 
make a "rational" choice from among uncertain alternatives and to 
find which, if any, numerical maximization is equivalent to it. The task 
has two major conceptual aspects: we must say exactly what comprises 
the domain of uncertain alternatives and we must describe what we 
mean by a rational choice in that domain. 

Roughly. an "uncertain alternative" is a gamble (ou l o ~ t e r ~ )  in 
which chance determines the exact consequence to the decision maker. 
Somewhat more specifically, if A ,  , . . . , A ,  are pairwise disjoint events 
and c ,  , . . . , c, are entities that can be delivered to a person and among 
which he has preferences, then an uncertain alternative of the form 
( A , ,  c ,  ; . . . ; A , ,  c,) is interpreted to mean that you receive ci if Ai 

n 

occurs. (I am being purposely non-commital about the extent of IJ A i  .) 
L = l  

The simplest rationality postulate is the transitivity of preference. 
That it is rational to be transitive can be argued as follows: If you prefer 
alternative f to g, then you should be willing to pay me a sum of money, 
however small, to guarantee J' rather than q. Similarly, if you prefer 
g to h you will pay to get g rather than h ;  and if you are intransitive, 
you will pay to get h rather than J'. And so I can relieve you of all your 
assets without ever giving you anything in return. A somewhat more 
subtle condition of rational behavior can be formulated as follows. 
Suppose that c and c' are two consequences and that you prefer c  to 
c', then provided that A  has a non-negligible chance of occuring you 
should prefer ( A ,  c;  1, d )  to ( A ,  c'; 2, d ) .  The argument is that if A 
occurs you will receive a more preferred consequence from the former 
gamble, and if A does not occur you receive the same consequence 
from either gamble. This is known, for obvious reasons, as the "sure- 
-thing principle." 



The sort of numerical representation that seems to arise naturally 
is this: There exists a probability measure P over the events and a 
numerical (utility) function v over the consequences with the property 
that the expectation of the random variable induced by v over the uncer- 
tain alternatives is order preserving. More explicity, (A, , c, ; . . . ; 
A,, c,) is preferred or indifferent (written 2)  to (B, ,d l  . . . ; Bm , dm) iff 

... 

u (c,) P (A,) 2 v (d,) P (Bi). 
L42l l  L = l  

This representation surely suggests the phrase "expected utility theory" 
of the title. The adjective "subjective" is appended to emphasize that 
the probability measure P may very well be unique to the decision maker 
and that, in particular, it need not agree with a relative frequency defi- 
nition of probability, when that exists. 

2. Some History 

In practice, little disagreement exists over the conditions of ratio- 
nality, even though most expositions of expected utility theory place 
the main emphasis on these postulates. What really distinguishes the 
existing theories is the exact definition of the collection of uncertain 
alternatives. As an indirect consequence, proofs of the representation 
theorem differ considerably. I will attempt to make clear how the se- 
veral theories characterize the class of alternatives, but, with one excep- 
tion, I will not state their exact assumptions. For the latest and most 
general theory, the assumptions and representation theorem are stated 
fully and a brief outline of the proof is supplied. 

The first modem and mathematically complete discussion of an 
expected utility theory appeared in an appendix to the 1947 edition 
of von Neumann and Morgenstern's classic 7heory of games and eco- 
nomic behavior. If, for simplicity, we denote the two-component gamble 
(A, c; 2, d) by cAd, then they assumed that a probability measure 
P is given and that cAd is indifferent (written -) to cBd when P (A) = 

= P(B). Therefore, the symbol for a gamble can be altered to cPd, 
meaning that you receive consequence c with probability P and d with 
probability 1 - P. In addition to such objects, they included those where 
c and d are replaced by simple two-component gzmbles: (cQd) P (c1Q'd'). 
Their axioms imply that 

(cQd) Pd - cQPd, 

which makes sense only if the events underlying P and Q are independent. 
Finally, although my discussion may have suggested that the uncertain 

alternatives are defined over a fixed sample space, this is not the only 
possible interpretation of cPd. If P = m/n, then the gamble cPd can 
be realized by spinning a fair roulette wheel that is divided into n equal 
sectors, m of which are assigned to c and the remaining n - m to d. Alter- 
natively, one can have n + 1 different coins with the probabilities 
O/n, l/n, . . . , m/n, . . . , n/n of heads. In this case, c (m/n) d is realized 
by selecting and tossing a particular coin. The gamble is conditional 
on that coin; whereas, with the roulette weheel all gambles are condi- 
tional on the same sample space. Without taking much note of the 
choice being made, experimentalists usually assume an analogue of 
the coin interpretation and statisticians almost always assume the formal 
analogue of the roulette wheel. As we shall see, this makes a difference. 

I will discuss the other theories in terms of their attempts to cope 
with one or more of the difficulties of the von Neumam-Morgenstern 
theory: (1) the assumption that gambles can be described in terms of 
a given probability measure rather than just in terms of events; (2) the 
restriction to simple (= two-component) gambles and simple com- 
pounds of them; (3) the assumption that there are many independent 
events; and (4) the uncertainty about the assumed domain of the gambles. 

Provided that nothing else is changed, it is nearly trivial to generalize 
the theory to gambles with an arbitrary, but finite, number of compo- 
nents. Examples can be found in Blackwell & Girshick (1954), Luce 
& Raiffa (1957), and Samuelson (1952). 

All other generalizations involve dropping the assumption that 
a probability measure is given. The first, Ramsey (1931), clearly pre-dates 
von Neumann and Morgenstern, but it was virtually without influence 
at the time and it was not rendered fully rigorous until the papers by 
Suppes & Winet (1955) and Davidson & Suppes (1956). In this theory 
there are only two-component gambles and comparisions are made 
on the same partition, e.g., aAb versus cAd. For this reason, there is 
no reason to be clear about whether all gambles have a common sample 
space or not. The key idea is to postulate the existence of an event E* 
with the property that for all a and b, aE*b - bE*a. It is easyto see 

that if an expected utility representation exists, P(E*) = P(E*). Thus, 
again assuming that the representation exists, aE*b 2 cE*d iff v (a) + 
+ v (b) 2 o (c) -t v (d). Axioms were stated that yield this additive repre- 
sentation oveuonsequences, and then further assumptions were intro- 
duced which permit the construction of a probability measure P from 
o and from the orderings of aAb versus cAd. This theory is seriously 
flawed not only by the restrictiction to two-component gambles, but by 
the fact that aAb is not compared with cBd. 

The first major attempt to get rid of all the difficulties is in Savage's 



1954 book fie foundations of statistics. He took as his primitives a 
sample space Y (which he called the set of states of nature), a set %? of 
consequences, and a set 9 of possible decisions of the form f : Y - V. 
(Uncertain alternatives of this generality I shall call "decisions"; Savage 
called them "acts.") He restricted his representation theorem to those 
decisions that have a finite range - gambles. Between any two deci- 
sions, he assumed a judgment of preference or indifference. With this 
relation 2 given, he stated axioms which permitted him to define a na- 
tural ordering of preference over the consequences and another of 
"qualitatively more probable than': over the events. The one over %? 
arises from the ordering of the constant decisions [f (s) = c for all 
s E Y], and the one over the events arises from the ordering of gambles 
of the form cAd versus cBd, where c is preferred to d. Additional postu- 
lates were made about the probability ordering so that, following de 
Finetti (1937), an orderpreserving probability measure could be cons- 
tructed. Savage was then in a position comparable to the starting point 
of von Neumann and Morgenstern's theory, and the raminder of his 
proof parallels theirs. 

Savage's system has two main drawbacks. First, it is awkward to 
state the axioms directly in terms of the primitives because a number 
of intermediate definitions and proofs are needed. Second, the simul- 
taneous assumptions that decisions are defined over the whole sample 
space and that all the constant decisions exist are, from a realistic point 
of view, virtually contradictory. Although one's first impulse is to try 
to restrict the domain of decisions to exclude the constant ones, two 
facts ultimately lead one to consider altering the definition of a decision. 
First, Savage's proof is crucially dependent upon the existence of cons- 
tant acts, and so if they are dropped a wholly different approach must 
be taken. Second, our natural formulation of decisions is never over 
the whole sample space. For example, when you consider traveling 
from Rio to Sio  Paulo and the decision is between flying and driving, 
you evaluate each alternative conditional on that mode of travel. The 
travel by plane involves the restrictive event of you in the airplane, and 
the drive involves the restrictive event of your driving your car from 
Rio to Sgo Paulo (which you surely will not do if you fly there). You - 
the decision maker - determine, by your choice, which of these two 
events will occpr; this conditional nature of decisions is, in my opinion, 
one of their most basic characteristics. 

The first attempt to take into account the conditional nature of 
decisions is Pfanzagl (1957, 1968). Earlier Fishburn (1964) discussed 
this tack informally, but he did not propose an axiomatic theory. Pfan- 
zagl's theory is flawed in two major ways. First, as in the von Neumann 

- Morgenstern theory, it deals only with two-component gambles 
and simple compounds of them. Second, it includes a strong assumption 
about the existence of independent events (defined in terms a qualitative 
probability ordering) which implies that the underlying sample space 
must be atomless. A generalization by Luce & Krantz (1969) avoids 
both difliculties; I shall describe it in some detail. 

Table 1 summarizes how the various theories differ in their notions 
of an uncertain alternative. 

3. Conditional Expected Utility 

This theory has five primitives: 
d is an algebra of subsets of a sample space X ;  

JV is a subset of 8 (which will turn out to be events having pro- 
bability 0); 

W is an arbitrary set (whose elements are interpreted as conse- 
quences); 

9 i s a s u b s e t o f  { f , I A ~ d - N a n d  fa:A+%?,}; 
2 is a binary relation on 9. 

A typical decision in ihis theory is an assignment of consequences to 
the sample points of some non-null event on which the decision can 
be said to be conditional. We do not take 9 to be all such functions, 
but a subset of them that is characterized by our assumptions. 

The first assumption includes, in part, the first rationality postulate 
mentioned earlier. 

1. 2 is a weak order, i.e., it is connected and transitice. As usual, - is defined to mean that both 2 and 5 hold and > to mean that 
2 and not 5. 

The next four postulates are structural in the sense that they place 
restrictions on Jlr and9. Throughout, it is assumed that A, B E d - JV 
and fA , b, , hs), etc. E 9 .  The restriction of a function to the domain 
B is denoted (f,), . 

2. i) If B c A, then ( fA), E 9 ; 
ii) if A {n B = 4, then fA u g , ~  9. 

3. i) d - Jlr has theree painvise disjoint events; 
ii) 9/- has at least two elements. 

4. i) Iff, E 9 and B E  b - M ,  then there exists g, E 9 such that 
9s " f a ;  

ii) i j  A n B = 4 and 

hy' u g, 2fius 2 hL2) u g ~ ,  
then there exists hA E 9 such that hA u gB - f A U B .  



5. i) I j ' R ~ , V a n d  S C  R, t h e n S ~ & " ;  
ii) R E J f  ifr, for all A E 8 - ,V and all fA,, E 9, 

f A u R  l f A u ~ ) A  . 
Assumption 2 is a form of closure for 9; 3 simply avoids trivialness; 
4 insures that 9 is adequately rich; and 5 characterizes ,V as the set of 
events over which the associated consequences do not matter. 

The remaining four assumptions are, in a sense, all rationality ones. 
6. If A n B = 4 and jA - g B ,  then f, u g, -- fA . 
7. If A n B = 4, then f L1' 2 f L2' $ 

To state the last two assumptions, it is convenient to introduce 
a definition. Let N be an "interval" of integers, then 

{ f Q ) I N }  { f $ ) I f $ ) ( f $ ) ~ 9  and  EN} 

is a standard sequence if there exist g(i) > g ( g O ) ,  A n B = 4, such that 
for all i .  i + 1 E N ,  

8, (Archimeddan) Every bounded standard sequence is  finite. 
9. If' { f'$) ( N }  and {h? I N }  are standard sequences and, for some 

k ,  k +  l E N ,  
f 2 )  - h2) and f $ + l )  - h $ + l ) ,  

then for all i E N ,  f 5) - hs)  . 
Of the rationality postulates, 7 is the most controversial. Note 

that it is a natural generalisation of the sure-thing principle, which 
itself is not controversial. Examples have been presented by Allais 
(1953) and Ellsberg (1961) which convince many people that they would 
violate 7. Moreover, MacCrirnmon (1966) has performed an experi- 
ment with business executives, a considerable fraction of whom violated 
7 and, what is more impressive, when confronted with their violations 
many argued that they had chosen sensibly. This contrasts with their 
embarrassed desire to revise their choices when confronted with viola- 
tions of transitivity. Nonetheless, as Savage (1954) and Raiffa (1961) 
have argued convincingly, 7 is compelling as a normative principle of 
rational behavior. 

7heorem 1. If assumptions 1-9 hold, then there exist u : 9 -, R and 
P : 8 + [0, 11 such that 

i) (X, B, P) is a finitely additive probability space; 
ii) R E X  in P(R) = O ;  

iii) f ,  Z g~ iff u ( f A )  h u (9,); 
iv) if' A n B = 4, then 

In contrast to the other theories I have mentioned, it can be shown 
by example that 9 need not include any constant decisions whatsoever. 
As a result, the utility function u is defined on 9, not on %?, and no expec- 
tation result is established. Part iv merely says that u has a major pro- 
perty of an expectation, but it does not say that it is one. To get an expec- 
tatation we need both to add assumptions and to restrict our attention 
to a subclass of decisions. We say that fa is a gamble if range of fa is 
a finite subset of W, we denote by c ,  the constant decision with c ,  ( x ) = c  
for x E A. Obviously, a gamble is a finite union of disjoint constant 
decisions. 

7heorem 2.  Assume, in addition to 1-9, 
a) for c E %?, there exists A ( c )  E 8 - JV such that the constant decision 

c ~ ( ~ '  E 9, and 
b) i j  c ,  , c ,  E 9, then cA - c ,  . 

7hen there exists o :% -+ [W such that for all gambles fa 

u (fa) = E [o ( f A j  I A ] ,  

where u is defined in 7heorem 1 and E is the expectation relative to P 
of 'Iheorem 1 .  

Given that Theorem 1 is true, the proof of Theorem 2 is nearly 
trivial. 

Note that, in contrast to Savage's theory, the domain of the postu- 
lated constant decisions can be very restricted; for example, the toss 
of a coin will do. Assumption b is probably not a very good one. Cer- 
tainly it does not describe behavior accurately and it can only be defended 
as a principle of rationality if we assume that all chance events have 
the same utility. As this seems silly, much interest attaches to the other 
representations that are possible when (b) is dropped. This problem is 
open. One particularly interesting case is to discover conditions sufi- 
cient to show that there exist v : W -+ R and w : 6 -+ R such that for 
any gamble fA , 

u (fa) = [U (A) I A] + " (A) .  

The natural interpretation is that the utility of a decision is decomposed 
into the sum of the expectation of the utility of the consequences and 
the utility of the underlying event itself. Jeffrey (1965) Studied such 
functions W 



When X is finite, it is easy to describe how to pass from a conditional 
representation of decisions to an equivalent Savage-type unconditional 
formulation. Set Y = n A and define a probability measure over 

A E I I X  
Y in terms of that over 8 in the natural way. From this we see that com- 
paratively simple conditional situations can lead to impractically com- 
plex unconditional ones. For example, if d - A'" consists of all non-empty 
subsets of a five element sample space, then .Y has 5 x 121° elements! 

4. Sketch of the Proof of Theorem I. 

The following outline of the proof is (with trivial changes in the 
numbering of assumptions) a direct quatation from Luce & Krantz 
(1969). 

"A result from the theory of additive, n-dimensional conjoint 
measurement is used to prove Theorem 1; it is similar to, but more 
general than, a theorem of Debreu (1967). Suppose that 2 is a binary 

n 

relation on rJ a i ,  where n 2 3 and ai are non-empty sets. We say 
i = l  

that the relation is independent if, for every M c N = (1, 2, . . . . n), 
the ordering induced by 2 on n ai for a fixed element in n ai 

ieM i e N  - M 
is independent of that choice. The relation satisfies restricted solvability 
if whenever 

(b ,  , . . . , h,**, . . . , b,) 2 ( a ,  , . . . , a , ,  . . . , a,) 2 (h ,  . . . . . bT . . . . , b,), 

then there exists b, E ai  such that 

( b l ,  . .., b i ,  . . . . b,,) - ( a l ,  . . . , ai , . . . , a,,). 

Let I be a sequence of integers (positive or negative or both, finite or 
infinite), then a set {a!€ ai 1 j E lf is a standard sequence if there exist 
h,O, hi E a,, k E N {i:, such that for all j, j + 1 E I, 

( b ;  , . . . , a;.  . . ., &:) - ( b y ,  . . . , a ; ~ " ,  . . . ,  by). 

And, finally, when 2 is a weak order and independent, we say that 
component a i  is essential if a , / -  has at least two equivalencc classes. 

Then the following result can be proved (Krantz, et al, in prepara- 
tion) : 

n 

7heorem 3. If' 2 on 11 a, is an independent weak ordering for 
i = l  

which restricted solvability holds, every bounded standard sequence is 
finite, and at least three components e are essenfial, then there exist real- 
valued fiinctions cpi on ai , i E N ,  stich that filr all ai . bi E ai , 

n n 

(a1 + . - . , a,) 2 (bl , . . . , bn) if and only if' i =  1 I cpi (ai) 2 i = l  C rp ,  (b,). 

Moreover, i j  cp: is another jarni1.v of firnctions having the same property, 
then there exist numbers a > 0 and pi such that for all i E N, qi* = rcpi + pi . 

"We now turn to Theorem 1. Let Ai , i~ N = {l,  2, . . . , n ) ,  n 2 2, 
be any set of painvise disjoint events from E-M.  Let aAi denote the 
set of decisions conditional on Ai and define 2 on n a A i  by fl u . . . 

ieN 
u f;, 2 gi  u . . . u g n .  For n 2 3, one proves that the hypothesis of 
Theorem 3 are fulfilled, and for n = 2, one uses Axiom 3 i  to convert 
the problem into a 3-component case. The conclusion is that functions 
cpi  exist that are additive over the components. A variety of functions 
on a,  will arise from various partitions of X. One next shows that these 
are all related to one another by positive linear transformations. 

"Select any two decisions with f 1  > j O to serve as unit and zero 
(they exist by Axiom 3ii). Choose that normalization u, of the "additive" 
functions defined over a ,  such that, for f: - f" and 1.5: - f 0  (which 
exist by Axiom 4i), u, ( f  A) = 1 and rr, (j ;) = 0. For any A,  B E  E - M 
with A n B = #, we know that the additive decomposition 

U A ~ B  = VA. B + VB,A 

exists. But we also know that q,, . is linearly related to u, and cp,, , 
to ti,, I.e., 

The proof is completed by showing that the p terms sum to 0, that 
P (A ( !AJ B)  can be written as P (Aj /P (k4.J B), where the unconditional P 
is a finitely additive probability measure, and that the functions u, 
are order preserving. The last part is by no means obvious and requires 
an extended argument. Axiom 9 is used to show that standard sequences 
behave appropriately." 
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